Neighborhood Preserved Sparse Representation for Robust Classification on Symmetric Positive Definite Matrices
نویسندگان
چکیده
Due to its promising classification performance, sparse representation based classification(SRC) algorithm has attracted great attention in the past few years. However, the existing SRC type methods apply only to vector data in Euclidean space. As such, there is still no satisfactory approach to conduct classification task for symmetric positive definite (SPD) matrices which is very useful in computer vision. To address this problem, in this paper, a neighborhood preserved kernel SRC method is proposed on SPD manifolds. Specifically, by embedding the SPD matrices into a Reproducing Kernel Hilbert Space (RKHS), the proposed method can perform classification on SPD manifolds through an appropriate Log-Euclidean kernel. Through exploiting the geodesic distance between SPD matrices, our method can effectively characterize the intrinsic local Riemannian geometry within data so as to well unravel the underlying sub-manifold structure. Despite its simplicity, experimental results on several famous database demonstrate that the proposed method achieves better classification results than the state-of-the-art approaches.
منابع مشابه
Positive Definite Matrices: Data Representation and Applications to Computer Vision
Numerous applications in computer vision and machine learning rely on representations of data that are compact, discriminative, and robust while satisfying several desirable invariances. One such recently successful representation is offered by symmetric positive definite (SPD) matrices. However, the modeling power of SPD matrices comes at a price: rather than a flat Euclidean view, SPD matrice...
متن کاملOn Pmhss Iteration Methods for Continuous Sylvester Equations
The modified Hermitian and skew-Hermitian splitting (MHSS) iteration method and preconditioned MHSS (PMHSS) iteration method were introduced respectively. In the paper, on the basis of the MHSS iteration method, we present a PMHSS iteration method for solving large sparse continuous Sylvester equations with non-Hermitian and complex symmetric positive definite/semi-definite matrices. Under suit...
متن کاملA Sparse-Sparse Iteration for Computing a Sparse Incomplete Factorization of the Inverse of an SPD Matrix
In this paper, a method via sparse-sparse iteration for computing a sparse incomplete factorization of the inverse of a symmetric positive definite matrix is proposed. The resulting factorized sparse approximate inverse is used as a preconditioner for solving symmetric positive definite linear systems of equations by using the preconditioned conjugate gradient algorithm. Some numerical experime...
متن کاملSparse Coding and Dictionary Learning for Symmetric Positive Definite Matrices: A Kernel Approach
Recent advances suggest that a wide range of computer vision problems can be addressed more appropriately by considering non-Euclidean geometry. This paper tackles the problem of sparse coding and dictionary learning in the space of symmetric positive definite matrices, which form a Riemannian manifold. With the aid of the recently introduced Stein kernel (related to a symmetric version of Breg...
متن کاملSparse Matrix Decompositions and Graph Characterizations
Zeros in positive definite correlation matrices arise frequently in probability and statistics, and are intimately related to the notion of stochastic independence. The question of when zeros (i.e., sparsity) in a positive definite matrix A are preserved in its Cholesky decomposition, and vice versa, was addressed by Paulsen et al. [19] [see Journal of Functional Analysis, 85, 151-178]. In part...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1601.07336 شماره
صفحات -
تاریخ انتشار 2016